Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
ACS Biomater Sci Eng ; 9(7): 4178-4186, 2023 07 10.
Article in English | MEDLINE | ID: covidwho-20238528

ABSTRACT

The SARS-CoV-2 global pandemic has reinvigorated interest in the creation and widespread deployment of durable, cost-effective, and environmentally benign antipathogenic coatings for high-touch public surfaces. While the contact-kill capability and mechanism of metallic copper and its alloys are well established, the biocidal activity of the refractory oxide forms remains poorly understood. In this study, commercial cuprous oxide (Cu2O, cuprite) powder was rapidly nanostructured using high-energy cryomechanical processing. Coatings made from these processed powders demonstrated a passive "contact-kill" response to Escherichia coli (E. coli) bacteria that was 4× (400%) faster than coatings made from unprocessed powder. No viable bacteria (>99.999% (5-log10) reduction) were detected in bioassays performed after two hours of exposure of E. coli to coatings of processed cuprous oxide, while a greater than 99% bacterial reduction was achieved within 30 min of exposure. Further, these coatings were hydrophobic and no external energy input was required to activate their contact-kill capability. The upregulated antibacterial response of the processed powders is positively correlated with extensive induced crystallographic disorder and microstrain in the Cu2O lattice accompanied by color changes that are consistent with an increased semiconducting bandgap energy. It is deduced that cryomilling creates well-crystallized nanoscale regions enmeshed within the highly lattice-defective particle matrix. Increasing the relative proportion of lattice-defective cuprous oxide exposed to the environment at the coating surface is anticipated to further enhance the antipathogenic capability of this abundant, inexpensive, robust, and easily handled material for wider application in contact-kill surfaces.


Subject(s)
COVID-19 , Copper , Humans , Copper/pharmacology , Copper/chemistry , Powders/pharmacology , Escherichia coli , SARS-CoV-2 , Bacteria
2.
BMC Pregnancy Childbirth ; 23(1): 366, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2323299

ABSTRACT

OBJECTIVE: The present study explored the relationship between maternal copper and zinc levels and preterm labor. DESIGN: The design of the present study was a case-control. Two groups were matched in terms of early-pregnancy body mass index (BMI), pregnancy and childbirth rating, education level, income, and employment status. Blood samples were taken from mothers after meeting the inclusion criteria when admitted to the maternity ward to check copper and zinc serum levels. Demographic and midwifery data were also collected using a questionnaire and patient records. The data were analyzed in SPSS26 using independent-samples T-test, chi-square, Fisher exact test, and regression analysis, and the p < 0.05 was considered statistically significant. SETTING: Bohloul Hospital in Gonabad, Iran. PARTICIPANTS: The subjects were 86 pregnant women visiting the hospital in two cases (preterm delivery) and control (term delivery) groups. RESULTS: The mean serum level of zinc in the case group (preterm delivery) (44.97 ± 13.06 µg/dl) was significantly lower than the control group (term) (52.63 ± 21.51 µg/dl), and the mean serum level of copper in the case group (149.82 ± 53.13 µg/dl) was significantly lower than the control group (183.97 ± 71.40 µg/dl). CONCLUSION: As the findings showed, copper and zinc serum levels in mothers with preterm delivery were significantly lower than mothers with term delivery, which shows the biological role of these elements in the pathogenesis of preterm delivery.


Subject(s)
Malnutrition , Obstetric Labor, Premature , Premature Birth , Infant, Newborn , Pregnancy , Female , Humans , Copper , Pregnant Women , Case-Control Studies , Obstetric Labor, Premature/epidemiology , Zinc , Parturition
3.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2319074

ABSTRACT

This review aims to expose mechanical milling as an alternative method for generating copper-based particles (copper particles (CuP) and copper composites (CuC)); more specifically, via a top-down or bottom-up approach, on a lab-scale. This work will also highlight the different parameters that can affect the size distribution, the type, and the morphology of the obtained CuP or CuC, such as the type of mechanical mill, ball-to-powder ratios (BPR), the milling speed, milling time, and the milling environment, among others. This review analyzes various papers based on the Cu-based particle generation route, which begins with a pretreatment step, then mechanical milling, its approach (top-down or bottom-up), and the post-treatment. Finally, the characterization methods of the resulting CuP and CuC through mechanical milling are also discussed.


Subject(s)
Copper , Particle Size , Powders
4.
Int J Nanomedicine ; 18: 2307-2324, 2023.
Article in English | MEDLINE | ID: covidwho-2315052

ABSTRACT

Introduction: The coronavirus disease 2019 (COVID-19) pandemic has demonstrated the need for novel, affordable, and efficient reagents to help reduce viral transmission, especially in high-risk environments including medical treatment facilities, close quarters, and austere settings. We examined transition-metal nanozeolite suspensions and quaternary ammonium compounds as an antiviral surface coating for various textile materials. Methods: Zeolites are crystalline porous aluminosilicate materials, with the ability of ion-exchanging different cations. Nanozeolites (30 nm) were synthesized and then ion-exchanged with silver, zinc and copper ions. Benzalkonium nitrate (BZN) was examined as the quaternary ammonium ion (quat). Suspensions of these materials were tested for antiviral activity towards SARS-CoV-2 using plaque assay and immunostaining. Suspensions of the nanozeolite and quat were deposited on polyester and cotton fabrics and the ability of these textiles towards neutralizing SARS-CoV-2 was examined. Results: We hypothesized that transition metal ion containing zeolites, particularly silver and zinc (AM30) and silver and copper (AV30), would be effective in reducing the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Additionally, AM30 and AV30 antiviral potency was tested when combined with a quaternary ammonium carrier, BZN. Our results indicate that exposure of SARS-CoV-2 to AM30 and/or AV30 suspensions reduced viral loads with time and exhibited dose-dependence. Antiviral activities of the combination of zeolite and BZN compositions were significantly enhanced. When used in textiles, AM30 and AV30-coated cotton and polyester fabrics alone or in combination with BZN exhibited significant antiviral properties, which were maintained even after various stress tests, including washes, SARS-CoV-2-repeated exposures, or treatments with soil-like materials. Conclusion: This study shows the efficacy of transition metal nanozeolite formulations as novel antiviral agents and establishes that nanozeolite with silver and zinc ions (AM30) and nanozeolite with silver and copper ions (AV30) when combined with benzalkonium nitrate (BZN) quickly and continuously inactivate SARS-CoV-2 in suspension and on fabric materials.


Subject(s)
COVID-19 , Zeolites , Humans , SARS-CoV-2 , COVID-19/prevention & control , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Silver/chemistry , Copper , Quaternary Ammonium Compounds , Benzalkonium Compounds , Suspensions , Nitrates , Textiles , Zinc , Polyesters
5.
Bioelectrochemistry ; 152: 108434, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2300718

ABSTRACT

For clinical research, the precise measurement of hydrogen peroxide (H2O2) and glucose (Glu) is of paramount importance, due to their imbalanced concentrations in blood glucose, and reactive oxygen species (ROS) play a huge role in COVID-19 viral disease. It is critical to construct and develop a simple, rapid, flexible, long-term, and sensitive detection of H2O2 and glucose. In this paper, we have developed a unique morphological structure of MOF(Cu) on a single-walled carbon nanotube-modified gold wire (swnt@gw). Highly designed frameworks with nanotube composites enhance electron rate-transfer behavior while extending conductance and electroactive surface area.The composite sensing system delivers wide linear-range concentrations, low detection limit, and interference-free performance in co-existence with other biomolecules and metal ions. Endogenous quantitative tracking of H2O2 was performed in macrophage live-cells with the help of a strong stimulator lipopolysaccharide.The composite device was effectively utilized for the measurement of H2O2 and glucose in turbid samples of whole blood and milk samples without a pretreatment process. The practical results of biofluids showed favorable voltammetric results and acceptance recovery percentage levels between 97.49 and 98.88%. Finally, a flexible MOF-based hybrid system may provide a suitable detection platform in the construction of electro-biosensors and hold potential promise for clinical-sensory applications.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Copper/chemistry , Gold/chemistry , Hydrogen Peroxide/chemistry , Glucose , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection
6.
Biosensors (Basel) ; 12(1)2021 Dec 29.
Article in English | MEDLINE | ID: covidwho-2276106

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) is still raging all over the world. Hence, the rapid and sensitive screening of the suspected population is in high demand. The nucleocapsid protein (NP) of SARS-CoV-2 has been selected as an ideal marker for viral antigen detection. This study describes a lateral flow immunoassay (LFIA) based on colloidal gold nanoparticles for rapid NP antigen detection, in which sensitivity was improved through copper deposition-induced signal amplification. The detection sensitivity of the developed LFIA for NP antigen detection (using certified reference materials) under the optimized parameters was 0.01 µg/mL and was promoted by three orders of magnitude to 10 pg/mL after copper deposition signal amplification. The LFIA coupled with the copper enhancement technique has many merits such as low cost, high efficiency, and high sensitivity. It provides an effective approach to the rapid screening, diagnosis, and monitoring of the suspected population in the COVID-19 outbreak.


Subject(s)
COVID-19 , Copper , Coronavirus Nucleocapsid Proteins/isolation & purification , Immunoassay , Metal Nanoparticles , Antibodies, Viral , Gold , Humans , Phosphoproteins , SARS-CoV-2 , Sensitivity and Specificity
7.
Med Hypotheses ; 142: 109814, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-2277430

ABSTRACT

Copper (Cu) is an essential micronutrient for both pathogens and the hosts during viral infection. Cu is involved in the functions of critical immune cells such as T helper cells, B cells, neutrophils natural killer (NK) cells, and macrophages. These blood cells are involved in the killing of infectious microbes, in cell-mediated immunity and the production of specific antibodies against the pathogens. Cu-deficient humans show an exceptional susceptibility to infections due to the decreased number and function of these blood cells. Besides, Cu can kill several infectious viruses such as bronchitis virus, poliovirus, human immunodeficiency virus type 1(HIV-1), other enveloped or nonenveloped, single- or double-stranded DNA and RNA viruses. Moreover, Cu has the potent capacity of contact killing of several viruses, including SARS-CoV-2. Since the current outbreak of the COVID-19 continues to develop, and there is no vaccine or drugs are currently available, the critical option is now to make the immune system competent to fight against the SARS-CoV-2. Based on available data, we hypothesize that enrichment of plasma copper levels will boost both the innate and adaptive immunity in people. Moreover, owing to its potent antiviral activities, Cu may also act as a preventive and therapeutic regime against COVID-19.


Subject(s)
Copper/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adaptive Immunity , Antiviral Agents/therapeutic use , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Humans , Immune System , Immunity, Innate , Pandemics , Pneumonia, Viral/immunology , Reactive Oxygen Species/metabolism , SARS-CoV-2 , Treatment Outcome , COVID-19 Drug Treatment
8.
Nutrients ; 15(6)2023 Mar 21.
Article in English | MEDLINE | ID: covidwho-2267791

ABSTRACT

Excessive inflammatory response has been implicated in severe respiratory forms of coronavirus disease 2019 (COVID-19). Trace elements such as zinc, selenium, and copper are known to modulate inflammation and immunity. This study aimed to assess the relationships between antioxidant vitamins and mineral trace elements levels as well as COVID-19 severity in older adults hospitalized. In this observational retrospective cohort study, the levels of zinc, selenium, copper, vitamin A, ß-carotene, and vitamin E were measured in 94 patients within the first 15 days of hospitalization. The outcomes were in-hospital mortality secondary to COVID-19 or severe COVID-19. A logistic regression analysis was conducted to test whether the levels of vitamins and minerals were independently associated with severity. In this cohort (average age of 78 years), severe forms (46%) were associated with lower zinc (p = 0.012) and ß-carotene (p < 0.001) concentrations, and in-hospital mortality (15%) was associated with lower zinc (p = 0.009), selenium (p = 0.014), vitamin A (p = 0.001), and ß-carotene (p = 0.002) concentrations. In regression analysis, severe forms remained independently associated with lower zinc (aOR 2.13, p = 0.018) concentrations, and death was associated with lower vitamin A (aOR = 0.165, p = 0.021) concentrations. Low plasma concentrations of zinc and vitamin A were associated with poor prognosis in older people hospitalized with COVID-19.


Subject(s)
COVID-19 , Selenium , Trace Elements , Humans , Aged , Antioxidants/analysis , Vitamin A , beta Carotene , Copper , Pandemics , Retrospective Studies , Ascorbic Acid , Dietary Supplements/analysis , Vitamins/analysis , Minerals , Zinc , Micronutrients/analysis
9.
ACS Appl Mater Interfaces ; 15(16): 20398-20409, 2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-2281157

ABSTRACT

Antiviral coatings that inactivate a broad spectrum of viruses are important in combating the evolution and emergence of viruses. In this study, nano-columnar Cu thin films have been proposed, inspired by cicada wings (which exhibit mechano-bactericidal activity). Nano-columnar thin films of Cu and its oxides were fabricated by the sputtering method, and their antiviral activities were evaluated against envelope-type bacteriophage Φ6 and non-envelope-type bacteriophage Qß. Among all of the fabricated films, Cu thin films showed the highest antiviral activity. The infectious activity of the bacteriophages was reduced by 5 orders of magnitude within 30 min by the Cu thin films, by 3 orders of magnitude by the Cu2O thin films, and by less than 1 order of magnitude by the CuO thin films. After exposure to ambient air for 1 month, the antiviral activity of the Cu2O thin film decreased by 1 order of magnitude; the Cu thin films consistently maintained a higher antiviral activity than the Cu2O thin films. Subsequently, the surface oxidation states of the thin films were analyzed by X-ray photoelectron spectroscopy; Cu thin films exhibited slower oxidation to the CuO than Cu2O thin films. This oxidation resistance could be a characteristic property of nanostructured Cu fabricated by the sputtering method. Finally, the antiviral activity of the nano-columnar Cu thin films against infectious viruses in humans was demonstrated by the binding inhibition of the SARS-CoV-2 spike protein to the angiotensin-converting enzyme 2 receptor within 10 min.


Subject(s)
Bacteriophages , COVID-19 , Humans , Antiviral Agents/pharmacology , Copper/pharmacology , Copper/chemistry , SARS-CoV-2
10.
Biotechnol Lett ; 45(4): 551-561, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2271310

ABSTRACT

PURPOSE: We examined the inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by a nitrogen-doped titanium dioxide (N-TiO2) visible-light photocatalyst that was activated via light irradiation in the natural environment and was safe for human use as a coating material. METHODS: The photocatalytic activity of glass slides coated with three types of N-TiO2 without metal or loaded with copper or silver and copper was investigated by measuring acetaldehyde degradation. The titer levels of infectious SARS-CoV-2 were measured using cell culture after exposing photocatalytically active coated glass slides to visible light for up to 60 min. RESULTS: N-TiO2 photoirradiation inactivated the SARS-CoV-2 Wuhan strain and this effect was enhanced by copper loading and further by the addition of silver. Hence, visible-light irradiation using silver and copper-loaded N-TiO2 inactivated the Delta, Omicron, and Wuhan strains. CONCLUSION: N-TiO2 could be used to inactivate SARS-CoV-2 variants, including emerging variants, in the environment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Nitrogen Dioxide , Silver , Copper , Light , Titanium/radiation effects , Nitrogen , Catalysis
11.
Sci Rep ; 13(1): 2441, 2023 02 10.
Article in English | MEDLINE | ID: covidwho-2238799

ABSTRACT

Pathogenesis of COVID-19 by SARS-CoV-2 resulted in a global pandemic and public health emergency in 2020. Viral infection can induce oxidative stress through reactive oxygen species (ROS). Inflammation and environmental stress are major sources of oxidative stress after infection. Micronutrients such as iron, copper, zinc, and manganese play various roles in human tissues and their imbalance in blood can impact immune responses against pathogens including SARS CoV-2. We hypothesized that alteration of free metal ions during infection and metal-catalyzed oxidation plays a critical role towards pathogenesis after infection. We analyzed convalescent and hospitalized COVID-19 patient plasma using orthogonal analytical techniques to determine redox active metal concentrations, overall protein oxidation, oxidative modifications, and protein levels via proteomics to understand the consequences of metal-induced oxidative stress in COVID-19 plasma proteins. Metal analysis using ICP-MS showed significantly greater concentrations of copper in COVID-19 plasma compared to healthy controls. We demonstrate significantly greater total protein carbonylation, other oxidative modifications, and deamidation of plasma proteins in COVID-19 plasma compared to healthy controls. Proteomics analysis showed that levels of redox active proteins including hemoglobulin were elevated in COVID-19 plasma. Molecular modeling concurred with potential interactions between iron binding proteins and SARS CoV-2 surface proteins. Overall, increased levels of redox active metals and protein oxidation indicate that oxidative stress-induced protein oxidation in COVID-19 may be a consequence of the interactions of SARS-CoV-2 proteins with host cell metal binding proteins resulting in altered cellular homeostasis.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Copper , Oxidative Stress , Metals/metabolism , Oxidation-Reduction
12.
Sci Rep ; 13(1): 1502, 2023 01 27.
Article in English | MEDLINE | ID: covidwho-2221860

ABSTRACT

The primary objective of this study was to describe the cytotoxicity on HEPG-2 cells and to study the COVID­19 activities of the novel H2L ligand and its Cr and Cu nano-complexes. As well as exploring the chemistry of the prepared nano-complexes. In this paper novel Schiff base, N-(4, 6-dimethyl pyrimidin-2-yl)-4-(((2-hydroxyl naphthalene-1-y l) methylene) amino) benzene-sulfonamidesulfonyl) amide has been synthesized. The novel Schiff base H2L is used to synthesize novel nano and micro-complexes with CrCl2.6H2O and CuCl2.2H2O. The prepared ligand and micro complexes were interpreted by different spectroscopic techniques. The nano-sized Cr and Cu complexes were synthesized in an environmentally friendly manner using Coriandrum sativum (CS) media extract in ethanol. The structure, morphologies and particle size of the nano-sized complexes were determined using FT-IR, TEM, and PXRD. The results showed that the nano-domain complexes are on the Sub-nano scale. Furthermore, using TGA, we studied the effect of heat on the size of newly prepared nano-complexes. Experimental data were supported by DFT calculations. The findings revealed that the metal complexes investigated are more stable than the free ligand H2L. The antitumor activity was examined before and after heating the nano-complexes at 200 °C. The results reveal the Cr nano complex, after heating, exhibited strong antitumor activity with IC50 value (3.349 µg/ml). The tested Cu nano-complex shows good DNA cleavage. The liver cancer and COVID19 proteins were examined using molecular docking to identify the potential binding energy of inhibitors.


Subject(s)
COVID-19 , Coordination Complexes , Humans , Schiff Bases/chemistry , Sulfamethazine , Ligands , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Coordination Complexes/chemistry , Copper/chemistry
13.
Chem Biol Interact ; 373: 110349, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2177051

ABSTRACT

A series of pendant-armed mixed-ligand copper(II) complexes of the type [CuL1-3(diimine)] (1-6) have been synthesized by the reaction of pendant-armed ligands N,N-bis(2-(((E)-2-hydroxy-5-methylbenzylidene)amino)ethyl)benzamide (H2L1), N,N-bis(2-(((E)-2-hydroxy-5-methylbenzylidene)amino)ethyl)-4-nitrobenzamide (H2L2) and N,N-bis(2-(((E)-2-hydroxy-5-methylbenzylidene)amino)ethyl)-3,5-dinitrobenzamide (H2L3) with diimine = 2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen) in the presence of copper(II) chloride and analyzed using various spectroscopic methods. All the spectroscopic results support that the complexes adopt a pentagonal-bipyramidal shape around the copper ion. Gram-positive and Gram-negative bacteria were used to test all the complexes for antibacterial activity and all the complexes had greater potency against gram-negative pathogens. DNA-binding experiments of complexes with calf thymus DNA revealed a major-groove binding pattern, further supported by molecular docking studies. Complexes have significantly interacted with SARS-CoV-2 receptor via π-π, π-σ, π-alkyl, π-anion, π-cation, alkyl, hydrogen bond, van der Waals, and electrostatic interactions. The estimated binding energy and inhibition constant of these complexes are higher than standard drugs, chloroquine, and molnupiravir.


Subject(s)
COVID-19 , Coordination Complexes , Humans , Copper/chemistry , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , SARS-CoV-2/metabolism , Coordination Complexes/chemistry , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/metabolism , DNA/metabolism , Ligands
14.
Front Immunol ; 13: 1054445, 2022.
Article in English | MEDLINE | ID: covidwho-2198896

ABSTRACT

Background: A lot of studies have revealed that chronic urticaria (CU) is closely linked with COVID-19. However, there is a lack of further study at the gene level. This research is aimed to investigate the molecular mechanism of COVID-19-related CU via bioinformatic ways. Methods: The RNA expression profile datasets of CU (GSE72540) and COVID-19 (GSE164805) were used for the training data and GSE57178 for the verification data. After recognizing the shared differently expressed genes (DEGs) of COVID-19 and CU, genes enrichment, WGCNA, PPI network, and immune infiltration analyses were performed. In addition, machine learning LASSO regression was employed to identify key genes from hub genes. Finally, the networks, gene-TF-miRNA-lncRNA, and drug-gene, of key genes were constructed, and RNA expression analysis was utilized for verification. Results: We recognized 322 shared DEGs, and the functional analyses displayed that they mainly participated in immunomodulation of COVID-19-related CU. 9 hub genes (CD86, FCGR3A, AIF1, CD163, CCL4, TNF, CYBB, MMP9, and CCL3) were explored through the WGCNA and PPI network. Moreover, FCGR3A, TNF, and CCL3 were further identified as key genes via LASSO regression analysis, and the ROC curves confirmed the dependability of their diagnostic value. Furthermore, our results showed that the key genes were significantly associated with the primary infiltration cells of CU and COVID-19, such as mast cells and macrophages M0. In addition, the key gene-TF-miRNA-lncRNA network was constructed, which contained 46 regulation axes. And most lncRNAs of the network were proved to be a significant expression in CU. Finally, the key gene-drug interaction network, including 84 possible therapeutical medicines, was developed, and their protein-protein docking might make this prediction more feasible. Conclusions: To sum up, FCGR3A, TNF, and CCL3 might be potential biomarkers for COVID-19-related CU, and the common pathways and related molecules we explored in this study might provide new ideas for further mechanistic research.


Subject(s)
COVID-19 , Chronic Urticaria , MicroRNAs , RNA, Long Noncoding , Humans , Copper , COVID-19/genetics , Computational Biology , Biomarkers , MicroRNAs/genetics
15.
Biomolecules ; 12(12)2022 12 15.
Article in English | MEDLINE | ID: covidwho-2163233

ABSTRACT

Novel constructed bioactive mixed-ligand complexes (1b) [CuII(L)2(phen)] and (2b) [ZnII(L)2(phen)] {where, L = 2-(4-morpholinobenzylideneamino)phenol), phen = 1,10-phenanthroline} have been structurally analysed by various analytical and spectroscopic techniques, including, magnetic moments, thermogravimetric analysis, and X-ray crystallography. Various analytical and spectral measurements assigned showed that all complexes appear to have an octahedral geometry. Agar gel electrophoresis's output demonstrated that the Cu(II) complex (1b) had efficient deoxyribonucleic cleavage and complex (2b) demonstrated the partial cleavage accomplished with an oxidation agent, which generates spreadable OH● through the Fenton type mechanism. The DNA binding constants observed from viscosity, UV-Vis spectral, fluorometric, and electrochemical titrations were in the following sequence: (1b) > (2b) > (HL), which suggests that the complexes (1b-2b) might intercalate DNA, a possibility that is supported by the biothermodynamic measurements. In addition, the observed binding constant results of BSA by electronic absorption and fluorometric titrations indicate that complex (1b) revealed the best binding efficacy as compared to complex (2b) and free ligand. Interestingly, all compounds are found to interact with BSA through a static approach, as further attested by FRET detection. The DFT and molecular docking calculations were also performed to realize the electronic structure, reactivity, and binding capability of all test samples with CT-DNA, BSA, and the SARS-CoV-2 3CLPro, which revealed the binding energies were in a range of -8.1 to -8.9, -7.5 to -10.5 and -6.7--8.8 kcal/mol, respectively. The higher reactivity of the complexes than the free ligand is supported by the FMO theory. Among all the observed data for antioxidant properties against DPPH᛫, ᛫OH, O2-• and NO᛫ free radicals, complex (1a) had the best biological efficacy. The antimicrobial and cytotoxic characteristics of all test compounds have been studied by screening against certain selected microorganisms as well as against A549, HepG2, MCF-7, and NHDF cell lines, respectively. The observed findings revealed that the activity enhances coordination as compared to free ligand via Overtone's and Tweedy's chelation mechanisms. This is especially encouraging given that in every case, the experimental findings and theoretical detections were in perfect accord.


Subject(s)
Antineoplastic Agents , COVID-19 , Humans , Molecular Docking Simulation , SARS-CoV-2/metabolism , Molecular Dynamics Simulation , Ligands , Fluorescence Resonance Energy Transfer , DNA/chemistry , Antineoplastic Agents/chemistry , Zinc/chemistry , Copper/chemistry
16.
Front Immunol ; 13: 1022673, 2022.
Article in English | MEDLINE | ID: covidwho-2163017

ABSTRACT

Introduction: Certain trace elements are essential for life and affect immune system function, and their intake varies by region and population. Alterations in serum Se, Zn and Cu have been associated with COVID-19 mortality risk. We tested the hypothesis that a disease-specific decline occurs and correlates with mortality risk in different countries in Europe. Methods: Serum samples from 551 COVID-19 patients (including 87 non-survivors) who had participated in observational studies in Europe (Belgium, France, Germany, Ireland, Italy, and Poland) were analyzed for trace elements by total reflection X-ray fluorescence. A subset (n=2069) of the European EPIC study served as reference. Analyses were performed blinded to clinical data in one analytical laboratory. Results: Median levels of Se and Zn were lower than in EPIC, except for Zn in Italy. Non-survivors consistently had lower Se and Zn concentrations than survivors and displayed an elevated Cu/Zn ratio. Restricted cubic spline regression models revealed an inverse nonlinear association between Se or Zn and death, and a positive association between Cu/Zn ratio and death. With respect to patient age and sex, Se showed the highest predictive value for death (AUC=0.816), compared with Zn (0.782) or Cu (0.769). Discussion: The data support the potential relevance of a decrease in serum Se and Zn for survival in COVID-19 across Europe. The observational study design cannot account for residual confounding and reverse causation, but supports the need for intervention trials in COVID-19 patients with severe Se and Zn deficiency to test the potential benefit of correcting their deficits for survival and convalescence.


Subject(s)
COVID-19 , Selenium , Trace Elements , Humans , Zinc , Copper , Trace Elements/analysis
17.
Int J Infect Dis ; 111: 164-168, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-2113576

ABSTRACT

OBJECTIVES: The relationship between immunity and trace elements levels is well known. We aimed to estimate the association of serum trace elements with severity and outcomes in the Coronavirus Disease-2019 (COVID-19) patients. METHODS: In this single-centered, prospective, observational study, we enrolled 114 patients admitted to severe intensive care units (ICUs) and corresponding 112 sex and aged-matched non-ICU ward patients. Demographic data, clinical characteristics, and outcomes were all collected. We analyzed serum levels of zinc (Zn), copper (Cu), selenium (Se), and manganese (Mn) in both severity groups. RESULTS: The serum levels of Cu, Se, and Mn in both groups were within the normal range while Zn serum levels were lower than normal values. Based on these findings, Zn, Cu, Se, and Mn serum levels were not associated with disease severity (P > 0.05), while we found Zn serum levels were strongly associated with patient outcomes (P = 0.005). Our results indicated lower Mn serum levels were associated with age more than 55 years (P= 0.006). Our results were not in favor of a causal relationship between serum trace elements levels and disease severity. CONCLUSION: We found Zn level to be a strong indicator for patients' outcomes that can be considered for monitoring patient prognosis. Nutritional measures or supplementation can help reduce poor outcomes caused by low Zn levels in Iranian COVID-19 patients.


Subject(s)
COVID-19 , Trace Elements , Aged , Copper/analysis , Humans , Iran , Middle Aged , Prospective Studies , SARS-CoV-2
18.
ACS Appl Mater Interfaces ; 14(46): 52334-52346, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2117028

ABSTRACT

The high antibacterial and antiviral performance of synthesized copper(I) oxide (Cu2O) incorporated in zeolite nanoparticles (Cu-Z) was determined. Various Cu contents (1-9 wt %) in solutions were loaded in the zeolite matrix under neutral conditions at room temperature. All synthesized Cu-Z nanoparticles showed high selectivity of the cuprous oxide, as confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. An advantage of the prepared Cu-Z over the pristine Cu2O nanoparticles was its high thermal stability. The 7 and 9 wt % Cu contents (07Cu-Z and 09Cu-Z) exhibited the best activities to deactivate Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. The film coated with 07Cu-Z nanoparticles also had high antiviral activities against porcine coronavirus (porcine epidemic diarrhea virus, PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Specifically, the 07Cu-Z-coated film could reduce 99.93% of PEDV and 99.94% of SARS-CoV-2 viruses in 5 min of contact time, which were higher efficacies and faster than those of any previously reported works. The anti-SARS-CoV-2 virus film was coated on a low-cost PET or PVC film. A very small amount of cuprous oxide in zeolite was used to fabricate the antivirus film; therefore, the film was more transparent (79.4% transparency) than the cuprous oxide film or other commercial products. The toxicity of 07Cu-Z nanoparticles was determined by a toxicity test on zebrafish embryo and a skin irritation test to reconstruct a human epidermis (RhE) model. It was found that the impact on the aquatic environment and human skin was lower than that of the pristine Cu2O.


Subject(s)
COVID-19 , Nanoparticles , Zeolites , Humans , Swine , Animals , Zeolites/chemistry , SARS-CoV-2 , Oxides , Microbial Sensitivity Tests , Zebrafish , Copper/pharmacology , Copper/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Gram-Positive Bacteria , Antiviral Agents/pharmacology
19.
Molecules ; 27(22)2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2110188

ABSTRACT

With increasingly frequent highly infectious global pandemics, the textile industry has responded by developing commercial fabric products by incorporating antibacterial metal oxide nanoparticles, particularly copper oxide in cleaning products and personal care items including antimicrobial wipes, hospital gowns and masks. Current methods use a surface adsorption method to functionalize nanomaterials to fibers. However, this results in poor durability and decreased antimicrobial activity after consecutive launderings. In this study, cuprous oxide nanoparticles with nanoflower morphology (Cu2O nanoflowers) are synthesized in situ within the cotton fiber under mild conditions and without added chemical reducing agents from a copper (II) precursor with an average maximal Feret diameter of 72.0 ± 51.8 nm and concentration of 17,489 ± 15 mg/kg. Analysis of the Cu2O NF-infused cotton fiber cross-section by transmission electron microscopy (TEM) confirmed the internal formation, and X-ray photoelectron spectroscopy (XPS) confirmed the copper (I) reduced oxidation state. An exponential correlation (R2 = 0.9979) between the UV-vis surface plasmon resonance (SPR) intensity at 320 nm of the Cu2O NFs and the concentration of copper in cotton was determined. The laundering durability of the Cu2O NF-cotton fabric was investigated, and the superior nanoparticle-leach resistance was observed, with the fabrics releasing only 19% of copper after 50 home laundering cycles. The internally immobilized Cu2O NFs within the cotton fiber exhibited continuing antibacterial activity (≥99.995%) against K. pneumoniae, E. coli and S. aureus), complete antifungal activity (100%) against A. niger and antiviral activity (≥90%) against Human coronavirus, strain 229E, even after 50 laundering cycles.


Subject(s)
Copper , Metal Nanoparticles , Humans , Copper/chemistry , Cellulose/pharmacology , Antifungal Agents , Staphylococcus aureus , Escherichia coli , Antiviral Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Klebsiella pneumoniae , Oxides
20.
Biol Trace Elem Res ; 200(12): 5013-5021, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2118245

ABSTRACT

Our study aims to determine the relationship between hepcidin, aquaporin (AQP-1), copper (Cu), zinc (Zn), iron (Fe) levels, and oxidative stress in the sera of seriously ill COVID-19 patients with invasive mechanical ventilation. Ninety persons with and without COVID-19 were taken up and separated into two groups. The first group included seriously COVID-19 inpatients having endotracheal intubation in the intensive care unit (n = 45). The second group included individuals who had negative PCR tests and had no chronic disease (the healthy control group n = 45). AQP-1, hepcidin, Zn, Cu, Fe, total antioxidant status (TAS), and total oxidant status (TOS) were studied in the sera of both groups, and the relations of these levels with oxidative stress were determined. When the COVID-19 patient and the control groups were compared, all studied parameters were found to be statistically significant (p < 0.01). Total oxidant status (TOS), oxidative stress index (OSI), and AQP-1, hepcidin, and Cu levels were increased in patients with COVID-19 compared to healthy people. Serum TAC, Zn, and Fe levels were found to be lower in the patient group than in the control group. Significant correlations were detected between the studied parameters in COVID-19 patients. Results indicated that oxidative stress may play an important role in viral infection due to SARS-CoV-2. We think that oxidative stress parameters as well as some trace elements at the onset of COVID-19 disease will provide a better triage in terms of disease severity.


Subject(s)
COVID-19 , Trace Elements , Antioxidants/metabolism , Copper , Critical Illness , Hepcidins , Humans , Iron , Oxidants , Oxidative Stress , SARS-CoV-2 , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL